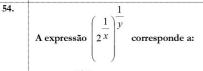


Universidade Eduardo Mondlane

Comissão de Exames de Admissão

Exame:	Matemática	Nº Questões:	58
Duração:	120 minutos	Alternativas por questão:	4
Ano:	2009		

<u>INSTRUÇÕES</u>


- Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer outra folha adicional, incluindo este 1.
- 2. Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do rectângulo por cima da letra. Por exemplo, pinte assim , se a resposta escolhida for A
 A máquina de leitura óptica anula todas as questões com mais de uma resposta e/ou com borrões. Para evitar isto, preencha primeiro à lápis HB, e só depois, quando tiver
- certeza das respostas, à esferográfica.

1.	A expressão $\frac{0,00014 \times 2100}{0,06}$ corresponde a:	
	A. 49 B. 490 C. 4,9 D. 0,49	
2.	A igualdade $-x = -x $ é válida para:	
	A. $x \in]-\infty, 0]$ B. $x \in]0, +\infty[$ C. $\forall x \in R$ D. ϕ	
3.	Qual das seguintes relações é uma função?	
	A. $x = 4$ B. $x = y^2 + 1$ C. $y = 4$ D. $x^2 + y^2 = 16$	
4.	Numa experiência científica, quando o resistor A e o resistor B são ligados num circuito paralelo, a resistência total é $\frac{1}{\frac{1}{A} + \frac{1}{B}}$. Esta fracção complexa é	
	equivalente a: A. 1 AB C $A+B$ D AB	
	A. 1 B. $\frac{AB}{A+B}$ C. $A+B$ D. AB	
5.	Qual das seguintes expressões é a equação da recta com coeficiente angular 0 e, passando pelo ponto (4,6)?	_
	A. $x=4$ B. $x=-4$ C. $y=6$ D. $y=-6$	
6.	Se as raízes de $ax^2 + bx + c = 0$ são números reais e iguais, é correcto afirmar que o gráfico da função $y = ax^2 + bx + c$:	
	A. Intersecta o eixo OX em 2 pontos diferentes B. Situa-se completamente acima do eixo OX	
	C. Situa-se completamente abaixo do eixo OX D. É tangente ao eixo OX	
7.	Um ponto dado $V(-3;2)$ pertence a uma função impar $y=g(x)$. Com base nesta informação é	
	correcto afirmar que, dos pontos representados na figura ao lado, também pertence a $y = g(x)$ o	
	ponto:	
	A. S B. Q C. P D. R	
	3-2-1 1 2 3 x S+ 2 +Q	
	3 •P	
8.	A figura ao lado mostra um triângulo ABC com o segmento AB prolongado até ao ponto D e o	
0.		
	ângulo externo CBD medindo 145 ⁰ . A soma dos ângulos A e C é igual a:	
	A. 135 ⁰ B. 155 ⁰ C. 165 ⁰ D. 145 ⁰	
	A. 153 B. 153 C. 165 D. 145	
	A B D	3
9.	A expressão $\sqrt{27} + \sqrt{12}$ é equivalente a:	
	A. $5\sqrt{3}$ B. $10\sqrt{3}$ C. $5\sqrt{6}$ D. $\sqrt{39}$	
10.	Se $x^y = 3$ então $x^{3y} + 2$ é igual a:	
	A. 11 B. 5 C. 29 D. 6	
11.	20% de $\frac{2}{3}$ é:	
	2 P 4 C 5 P 13	
	A. $\frac{2}{15}$ B. $\frac{4}{5}$ C. $\frac{5}{4}$ D. $\frac{13}{15}$	
12.	A equação da recta que passa pela origem e tem uma inclinação α = 120 0 é:	
	A. $y = \sqrt{3}x$ B. $\sqrt{3}x + y = 0$ C. $y + 3x = 0$ D. $y = 3x$	

·	
13.	Dada a função $y = h(x)$ no domínio R, o domínio da função $g(x) = \sqrt{h(x)}$ é: A. R B. $]-2;0[\ \]+\infty[$ C. $]-\infty;-2[\ \]0;1[$ D. $]-2;0[$
14.	Na figura está representada parte do gráfico de uma função f de domínio R. É correcto afirmar: A. A função admite limite no ponto $x = a$ B. $\lim_{x \to a^-} f(x) \neq f(a)$ e $\lim_{x \to a^+} f(x) = f(a)$ C. $\lim_{x \to a^-} f(x) = f(a)$ e $\lim_{x \to a^+} f(x) = f(a)$ a $\lim_{x \to a^-} f(x) = f(a)$ e $\lim_{x \to a^+} f(x) = f(a)$
	D. A função é contínua
15.	Sejam dadas as funções $y = g(x)$ e $y = h(x)$. A expressão $h[g(0)]$ é igual a:
	A. 0 B. 1 C. 2 D. 3
16.	Seja dado o polinómio $P(x) = x^3 + ax^2 - x + d$ divisível por $x - 1$ e cujo resto da divisão por $x + 2$ é igual a -12 . Os valores de $a = d$ são:
	A. $d = -2 \land a = 2$ B. $a = 6 \land d = -6$ C. $d = 2 \land a = -2$ D. $a = -6 \land d = 6$
17.	A equação $2^x = -3x + 2$ com $x \in R$
	A. Não tem solução B. Tem uma única solução no intervalo $\left]0; \frac{2}{3}\right[$
	C. Tem uma única solução no intervalo $-\frac{2}{3}$;0 D. Uma solução positiva e outra negativa
18.	Uma cidade cuja população varia sistematicamente tem hoje 30000 habitantes. Se o ritmo de variação se mantiver, então o número de habitantes daqui a t
	anos, $P(t)$, é calculado aplicando-se a fórmula $P(t) = P_0(0,9)^t$. Supondo que o ritmo de variação se mantenha, é verdadeira a afirmação:
	A. A sucessão $P(1),P(2),P(3)$ do número de habitantes por ano é uma progressão geométrica
	B. Daqui a dois anos a cidade terá 24300 habitantes C. No primeiro ano a população diminuiu 10% D. Todas as respostas estão correctas
19.	Seja $\log_2 3 = x$ e $\log_2 5 = y$ então $\log_3 15$:
	A. $5x$ B. $\frac{y-x}{x}$ C. $\frac{x+y}{y}$ D. $\frac{y+x}{x}$
20.	Passe para a pergunta seguinte!
21.	O valor de x que satisfaz a condição $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{x}{48}$ é:
22.	A. 16 B. 36 C. 52 D. 39
	Se $f(x) = 3 + 2^{-x}$ então $f(\log_2 5)$ é igual a:
	A. $\frac{16}{5}$ B. $3-2\log_2 5$ C. 8 D. $\frac{4}{5}$
23.	Se $\cos\theta = \frac{\sqrt{3}}{2}$ e $sen\theta = -\frac{1}{2}$ então:
	A. $sen2\theta = -\frac{\sqrt{3}}{2}$ B. $sen2\theta = \frac{\sqrt{3}}{2}$ C. $sen2\theta = -\frac{\sqrt{3}}{4}$ D. $sen2\theta = -1$
24.	Sejam f e g funções de R em R, sendo R o conjunto dos números reais, dadas por $f(x) = 2x - 3$ e $f[g(x)] = -4x + 1$. Nestas condições, $g(-1)$ é igual a: A. -5 B. 0 C. 4 D. 5
25.	O conjunto imagem (contradomínio) da função $y = \frac{1}{x-1}$ é o conjunto:
	A. $R \setminus \{1\}$ B. $R \setminus \{0\}$ C. $[0;2[$ D. $]-\infty;2]$
26.	Seja a função definida por $f(x) = \frac{2x-3}{5x}$. O elemento do domínio de f que tem $-\frac{2}{5}$ como imagem é:
	A. 0 B. $\frac{2}{5}$ C. $\frac{3}{4}$ D. $\frac{4}{3}$
27.	A função f é definida por $f(x) = ax + b$. Sabe-se que $f(-1) = 3$ e $f(3) = 1$, então podemos afirmar que $f(1)$ é igual a: A. 2 B2 C. 0 D. 3
28.	Sabe-se que -2 e 3 são raízes de uma função quadrática. Se o ponto (-1;8) pertence ao gráfico dessa função, então o seu valor: A. máximo é 1,25 B. mínimo é 1,25 C. mínimo é 12,5 D. máximo é 12,5.
29.	Se x_1 e x_2 são os zeros da função $y = 3x^2 + 4x - 2$, então o valor de $\frac{1}{x_1} + \frac{1}{x_2}$ é igual a:
	A. 1/2 B. 8/3 C. 1 D. 2

30.	O preço dos produtos agrícolas oscila de acordo com a safra de cada um: mais baixo no período da colheita, mais alto no período entre safras. Suponha que					
	o preço aproximado $P(t)$, em meticais, do quilograma de tomate seja dado pela função $P(t) = 0.8sen \left[\frac{2\pi}{360} (t-101) \right] + 2.7$, na qual té o número de dias					
	contados de 1 de Janeiro a 31 de Dezembro de um determinado ano. Para este					
	período de tempo, calcule os valores de t para os quais o preço P(t) seja igual a 3,10 Mts. A. 200 dias B. 131 dias C. 190 dias D. 191 dias					
31.						
31.	A razão das idades de duas pessoas é $\frac{2}{3}$. Achar estas idades sabendo que sua soma é 35 anos. A. 15 e 20 anos; B. 14 e 21 anos; C. 18 e 17 anos D. 13 e 22 anos Simplifique a expressão $\frac{c^2 + 6c + 9}{c^2 - 9}$.					
32.	A. 15 e 20 anos; B. 14 e 21 anos; C. 18 e 17 anos D. 13 e 22 anos					
32.	Simplifique a expressão $\frac{c^2 + 6c + 9}{2}$.					
	c^2-9 $c+3$ $c-3$ $c+1$					
	A. 1 B. $\frac{c+3}{c-3}$ C. $\frac{c-3}{c+3}$ D. $\frac{c+1}{c-1}$					
33.	Seja a expressão $P(x) = (x-1)(x+2)-2(x+2)(x-5)$. Se $Q(x) = 2(x+2)(x-5)$, simplifique o quociente $\frac{P}{Q}$.					
	x+9 $x+9$ $x+9$ $x+9$					
	A. $\frac{x+9}{2x}$ B. $\frac{-x+9}{2(x-1)}$ C. $\frac{-x+9}{2(x-5)}$ D. $\frac{x+9}{2(x+5)}$					
34.	Qual o conjunto solução da seguinte inequação $-7 < -3x - 1 < 2$? A. $x \in \{R: 2 < x < -1\}$ B. $x \in \{R: -5 < x < 2\}$ C. $x \in \{R: -1 < x < 2\}$ D. $x \in \{R: -3 < x < 1\}$					
35.	Uma senhora comprou uma caixa de bombons para seus dois filhos. Um destes tirou para si metade dos bombons da caixa. Mais tarde o outro menino					
	também tirou para si metade dos bombons que encontrou na caixa. Restaram 10 bombons. Calcule o número de bombons que existiam inicialmente na caixa.					
	A. 18 B. 20 C. 40 D. 80					
36.	Determine a área das seguintes figuras (em cm), sabendo que cada quadrado mede de lado 1cm					
	A. 8cm ² B. 12 cm ² C. 16 m ² D. 10 cm ²					
37.	Sabendo que a , b , c e 240 são directamente proporcionais aos números 180, 120, 200 e 480, respectivamente, determine os números a , b e c . A. $a = 90$, $b = 40$, $c = 100$ B. $a = 90$, $b = 70$, $c = 110$ C. $a = 80$, $b = 60$, $c = 100$ D. $a = 90$, $b = 60$, $c = 100$					
38.	A derivada da função $f(x) = \ln(2x-1)$ é:					
	A. $\frac{1}{2x-1}$ B. $\frac{2}{2x-1}$ C. $2\ln(2x-1)$ D. Nenhuma das alternativas anteriores					
39.	Dada a função $g(x) = \frac{x^2 - 9}{x - 3}$. O ponto de abcissa $x = 3$:					
	A. é um ponto de descontinuidade não eliminável de 1ª espécie B. é um ponto de descontinuidade não eliminável de 2ª espécie					
40.	C. não é ponto de descontinuidade D. é um ponto de descontinuidade eliminável					
	Resolva a inequação $\left(\frac{1}{2}\right)^{3x-x^2} > 1$					
	A. $x \in]-\infty, 0[$ B. $x \in]-\infty, 0[\cup]3, +\infty[$ C. $x \in]0, 3[$ D. $]-\infty, -3[\cup]0, +\infty[$					
41.	Resolva a equação $\log_5(x+1) + \log_5(2x+3) = 0$					
	A. $x \in \left\{-\frac{1}{2}, -2\right\}$ B. $x \in \left\{-\frac{3}{2}, -1\right\}$ C. $x = -\frac{1}{2}$ D. $x \in [-2, -1]$					
42.						
	A expressão $1 - \frac{x+1}{x-1}$ (quando, $x \neq 1$), é equivalente a:					
	A. 0 B. 2 C. $\frac{2}{x-1}$ D. $-\frac{2}{x-1}$					
43.	Passe para a pergunta seguinte!					
44.	A expressão algébrica $\frac{1}{x+1} + \frac{1}{x}$, onde $x \in \mathbb{R} \setminus \{-1,0\}$, pode ser dada por uma única fracção que é:					
	A. $\frac{2x+3}{x^2+x}$ B. $\frac{2x+1}{x^2+x}$ C. $\frac{2}{2x+1}$ D. $\frac{3}{x^2}$					
45.	A função $y = \frac{x^3 + 4}{x^2}$, tem como extremo:					
	$\frac{x^2}{x^2}$, ten como externo.					
	A. $y_{\text{max}} = -3$ B. $y_{\text{max}} = 3$ C. $y_{\text{min}} = -3$ D. $y_{\text{min}} = 3$					

46. O valor numérico de $\sqrt{\frac{3 \cdot \left(\operatorname{sen240^o} \right)^2 - \cos 90^\circ}{\left(\operatorname{sen} \ 270^\circ \right)^2}}}$ é: A. $\frac{9}{2}$ B. $\frac{3}{2}$ C. 3 D. $\frac{9}{4}$ 47. Se $k + \frac{1}{k} = a$ então $k^2 + \frac{1}{k^2}$ será igual a: A. a^2 B. $a^2 - 2$ C. $a^2 + 2$ D. $a - 2$ 48. Na figura estão representadas a recta $x + 3y - 6 = 0$ e a que tem coeficiente angular $\frac{2}{3}$ e passa pela origem. A área do triângulo OAB será igual a: A. 3 B. 4 C. $\frac{4}{3}$ D. $\frac{16}{3}$ D. $\frac{16}{3}$ 49. 0.2 semanas corresponde a: A. 1 hora e 40 minutos B. 1 dia e 4 horas C. 1 dia, 9 horas e 36 minutos D. Simplificando a expressão $\sqrt[n]{\frac{600}{2s^{n+2} - 2s^{n+1}}}$ obtém-se: A. $\sqrt[n]{24}$ B. $\frac{1}{25}$ C. $\frac{1}{24}$ D. $\sqrt[n]{\frac{1}{24}}$ D. $\sqrt[n]{\frac{1}{24}}$ 51. Se $10^x = 16$ então: A. $x = \log_1 6 10$ B. $x = \lg^2 4$ C. $x = 4 \lg 2$ D. $x = 2 \lg 8$	Página 4 o
47. Se $k + \frac{1}{k} = a$ então $k^2 + \frac{1}{k^2}$ será igual a: A. a^2 B. $a^2 - 2$ C. $a^2 + 2$ D. $a - 2$ 48. Na figura estão representadas a recta $x + 3y - 6 = 0$ e a que tem coeficiente angular $\frac{2}{3}$ e passa pela origem. A área do triângulo OAB será igual a: A. 3 B. 4 C. $\frac{4}{3}$ D. $\frac{16}{3}$ 49. 0,2 semanas corresponde a: A. 1 hora e 40 minutos B. 1 dia e 4 horas C. 1 dia, 9 horas e 36 minutos D. 50. Simplificando a expressão $\sqrt[4]{\frac{600}{25^{n+2} - 25^{n+1}}}$ obtém-se: A. $\sqrt[6]{24}$ B. $\frac{1}{25}$ C. $\frac{1}{24}$ D. $\sqrt[6]{\frac{1}{24}}$ 51. Se $10^x = 16$ então: A. $x = \log_1610$ B. $x = \lg^24$ C. $x = 4\lg 2$ D. $x = 2\lg 8$	
Se $k + \frac{1}{k} = a$ então $k^2 + \frac{1}{k^2}$ será igual a: A. a^2 B. $a^2 - 2$ C. $a^2 + 2$ D. $a - 2$ 48. Na figura estão representadas a recta $x + 3y - 6 = 0$ e a que tem coeficiente angular $\frac{2}{3}$ e passa pela origem. A área do triângulo OAB será igual a: A. 3 B. 4 C. $\frac{4}{3}$ D. $\frac{16}{3}$ 49. 0,2 semanas corresponde a: A. $1 \text{ hora e } 40 \text{ minutos}$ B. $1 \text{ dia e } 4 \text{ horas}$ C. $1 \text{ dia, 9 horas e } 36 \text{ minutos}$ D. Simplificando a expressão $\sqrt{\frac{600}{25^{n+2} - 25^{n+1}}}$ obtém-se: A. $\sqrt[n]{24}$ B. $\frac{1}{25}$ C. $\frac{1}{24}$ D. $\sqrt[n]{\frac{1}{24}}$ 51. Se $10^x = 16$ então: A. $x = \log_1610$ B. $x = \lg^2 4$ C. $x = 4\lg 2$ D. $x = 2\lg 8$	
48. Na figura estão representadas a recta $x+3y-6=0$ e a que tem coeficiente angular $\frac{2}{3}$ e passa pela origem. A área do triângulo OAB será igual a: A. 3 B. 4 C. $\frac{4}{3}$ D. $\frac{16}{3}$ 49. 0,2 semanas corresponde a: A. 1 hora e 40 minutos B. 1 dia e 4 horas C. 1 dia, 9 horas e 36 minutos D. Simplificando a expressão $\sqrt[n]{\frac{600}{25^{n+2}-25^{n+1}}}$ obtém-se: A. $\sqrt[n]{24}$ B. $\frac{1}{25}$ C. $\frac{1}{24}$ D. $\sqrt[n]{\frac{1}{24}}$ 51. Se $10^x = 16$ então: A. $x = \log 16 \ 10$ B. $x = \lg^2 4$ C. $x = 4 \lg 2$ D. $x = 2 \lg 8$	
Na figura estão representadas a recta $x+3y-6=0$ e a que tem coeficiente angular $\frac{2}{3}$ e passa pela origem. A área do triângulo OAB será igual a: A. 3 B. 4 C. $\frac{4}{3}$ D. $\frac{16}{3}$ 49. 0,2 semanas corresponde a: A. 1 hora e 40 minutos B. 1 dia e 4 horas C. 1 dia, 9 horas e 36 minutos D. Simplificando a expressão $\sqrt[n]{\frac{600}{25^{n+2}-25^{n+1}}}$ obtém-se: A. $\sqrt[n]{24}$ B. $\frac{1}{25}$ C. $\frac{1}{24}$ D. $\sqrt[n]{\frac{1}{24}}$ 51. Se $10^x = 16$ então: A. $x = \log_1 6 10$ B. $x = \lg^2 4$ C. $x = 4 \lg 2$ D. $x = 2 \lg 8$	
A. 1 hora e 40 minutos B. 1 dia e 4 horas C. 1 dia, 9 horas e 36 minutos D. Simplificando a expressão $\sqrt[n]{\frac{600}{25^{n+2}-25^{n+1}}}$ obtém-se: A. $\sqrt[n]{24}$ B. $\frac{1}{25}$ C. $\frac{1}{24}$ D. $\sqrt[n]{\frac{1}{24}}$ 51. Se $10^x = 16$ então: A. $x = \log_{16} 10$ B. $x = \lg^2 4$ C. $x = 4\lg 2$ D. $x = 2\lg 8$	*
Simplificando a expressão $\sqrt[n]{\frac{600}{25^{n+2}-25^{n+1}}}$ obtém-se: A. $\sqrt[n]{24}$ B. $\frac{1}{25}$ C. $\frac{1}{24}$ D. $\sqrt[n]{\frac{1}{24}}$ Se $10^x = 16$ então: A. $x = \log_{16} 10$ B. $x = \lg^2 4$ C. $x = 4\lg 2$ D. $x = 2\lg 8$. 1 hora e 96 minutos
B. $\frac{1}{25}$ C. $\frac{1}{24}$ D. $\sqrt[\eta]{\frac{1}{24}}$ Se $10^x = 16$ então: A. $x = \log_{16} 10$ B. $x = \lg^2 4$ C. $x = 4\lg 2$ D. $x = 2\lg 8$	
Se $10^{x} = 16$ então: A. $x = \log_{16} 10$ B. $x = \lg^{2} 4$ C. $x = 4 \lg 2$ D. $x = 2 \lg 8$	
2. A expressão $\log_3 2 \cdot \log_2 3$ é equivalente a:	
A. 1 B. $\log_5 6$ C. $\log_6 5$ D. $\log_2 9$ 3. Simplificando $\sqrt{18} + \sqrt[3]{-8} - \sqrt{50}$ tem-se:	

B.
$$2^{\frac{1}{xy}}$$

C.
$$\frac{x}{2^y}$$

Ao lado está representada parte do gráfico da função y=g(x). O limite $\lim_{x\to -\infty}\frac{1}{g(x)}$ é igual a:

A. $\frac{1}{2}$

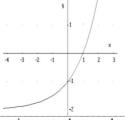
B. $-\frac{1}{2}$

C. –2

D. 0

De uma função h, contínua no intervalo [1;3], sabe-se que h(1) = 7 e h(3) = 4. Qual das afirmações seguintes é <u>de certeza</u> verdadeira?

- A. A função h tem pelo menos um zero no intervalo [1;3]
- B. A função h não tem zeros no intervalo [1;3]
- C. A equação h(x) = 5 tem pelo menos uma solução no intervalo [1;3]
- D. A equação h(x) = 5 não tem solução no intervalo [1;3]


57. Na função g(x) representada no gráfico ao lado o valor de x tal que g[g(x)] = -1 é:

A. .

B. -2

C.

D. -1

58. Admita que uma mancha produzida por um pingo de tinta, de um frasco, sobre um tecido é um círculo cujo raio vai aumentando com o decorrer do tempo. Sabe-se que t minutos após o pingo de tinta ter caído no tecido, a área em cm², de tecido ocupado pela mancha, é dada por $A(t) = \frac{52\pi}{1 + 4 \cdot 3^{2t}}$, com

 $t \geq 0$. Ao fim de quantos minutos o raio da mancha circular será de 2cm?

A. 2 minutos

B. 5 minutos

C. 3 minutos

D. Meio minuto

Exame de admissão de Matemática - 2009

CEAdmUEM

FIM

Conheça o seu estado de saúde Faça o teste de HIV!

